From LCF to HOL: a short history

نویسنده

  • Michael J. C. Gordon
چکیده

The original LCF system was a proof-checking program developed at Stanford University by Robin Milner in 1972. Descendents of LCF now form a thriving paradigm in computer assisted reasoning. Many of the developments of the last 25 years have been due to Robin Milner, whose influence on the field of automated reasoning has been diverse and profound. One of the descendents of LCF is HOL, a proof assistant for higher order logic originally developed for reasoning about hardware. The multi-faceted contribution of Robin Milner to the development of HOL is remarkable. Not only did he invent the LCF-approach to theorem proving, but he also designed the ML programming language underlying it and the innovative polymorphic type system used both by ML and the LCF and HOL logics. Code Milner wrote is still in use today, and the design of the hardware verification system LCF LSM (a now obsolete stepping stone from LCF to HOL) was inspired by Milner’s Calculus of Communicating Systems (CCS).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steps towards Verified Implementations of HOL Light

This short paper describes our plans and progress towards construction of verified ML implementations of HOL Light: the first formally proved soundness result for an LCF-style prover. Building on Harrison’s formalisation of the HOL Light logic and our previous work on proof-producing synthesis of ML, we have produced verified implementations of each of HOL Light’s kernel functions. What remains...

متن کامل

HOL Light: An Overview

HOL Light is an interactive proof assistant for classical higherorder logic, intended as a clean and simplified version of Mike Gordon’s original HOL system. Theorem provers in this family use a version of ML as both the implementation and interaction language; in HOL Light’s case this is Objective CAML (OCaml). Thanks to its adherence to the so-called ‘LCF approach’, the system can be extended...

متن کامل

Fast LCF-Style Proof Reconstruction for Z3

The Satisfiability Modulo Theories (SMT) solver Z3 can generate proofs of unsatisfiability. We present independent reconstruction of these proofs in the theorem provers Isabelle/HOL and HOL4 with particular focus on efficiency. Our highly optimized implementations outperform previous LCF-style proof checkers for SMT, often by orders of magnitude. Detailed performance data shows that LCF-style p...

متن کامل

ProofPeer - A Cloud-based Interactive Theorem Proving System

Probably the most popular ITP systems these days are Isabelle [4a] and Coq [5]. Isabelle is a descendant of Edinburgh LCF. Its declarative extension Isabelle/Isar [4b] has been heavily influenced by Mizar. Coq can be viewed as a descendant of the Automath system in that both systems are based on the Curry-Howard correspondence [6] (a proof is a program, the formula it proves is a type for the p...

متن کامل

Metatheory and Re ection in Theorem Proving: A Survey and Critique

One way to ensure correctness of the inference performed by computer theorem provers is to force all proofs to be done step by step in a simple, more or less traditional, deductive system. Using techniques pioneered in Edinburgh LCF, this can be made palatable. However, some believe such an approach will never be eecient enough for large, complex proofs. One alternative, commonly called reeecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000